Revival resonant scattering, perfect caustics, and isotropic transport of pseudospin-1 particles

نویسندگان

  • Hong-Ya Xu
  • Ying-Cheng Lai
چکیده

We report unusual physics associated with wave scattering in pseudospin-1 systems whose band structure consists of a conventional Dirac cone and a topologically flat band. First, for small scatterer size, we find a surprising revival resonant scattering phenomenon and identify a peculiar type of boundary trapping profile through the formation of unusual vortices as the physical mechanism. Second, for larger scatterer size, a perfect caustic phenomenon arises as a manifestation of the super-Klein tunneling effect, leading to the scatterer’s being effectively as a Veselago lens. Third, in the far scattering field, an unexpected isotropic behavior emerges at low energies, which can be attributed to the vanishing Berry phase for massless pseudospin-1 particles and, consequently, to constructive interference between the time-reversed backscattering paths. We develop an analytic theory based on the generalized Dirac-Weyl equation to fully explain these phenomena and articulate experimental schemes with photonic or electronic systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superscattering of a pseudospin-1 wave in a photonic lattice

We uncover a superscattering behavior of a pseudospin-1 wave from weak scatterers in the subwavelength regime where the scatterer size is much smaller than the wavelength. The phenomenon manifests itself as unusually strong scattering characterized by extraordinarily large values of the cross section even for arbitrarily weak scatterer strength. We establish analytically and numerically that th...

متن کامل

AFRL-AFOSR-VA-TR-2017-0049 Superpersistent Currents in Dirac Fermion Systems

The principal Objective of the project was to uncover, understand, and exploit persistent currents in 2D Dirac material systems and pertinent phenomena in the emerging field of relativistic quantum nonlinear dynamics and chaos. Systematic theories and methods were developed to analyze and characterize persistent currents in these systems and their unusual physical properties. The main accomplis...

متن کامل

Dynamics of spherically symmetric spacetimes: Hydrodynamics and Radiation

Using the 3+1 formalism of general relativity we obtain the equations governing the dynamics of spherically symmetric spacetimes with arbitrary sources. We then specialize for the case of perfect fluids accompanied by a flow of interacting massless or massive particles (e.g. neutrinos) which are described in terms of relativistic transport theory. We focus in three types of coordinates: 1) isot...

متن کامل

Relative velocity distribution of inertial particles in turbulence: A numerical study.

The distribution of relative velocities between particles provides invaluable information on the rates and characteristics of particle collisions. We show that the theoretical model of Gustavsson and Mehlig [K. Gustavsson and B. Mehlig, J. Turbul. 15, 34 (2014)], within its anticipated limits of validity, can predict the joint probability density function of relative velocities and separations ...

متن کامل

A STUDY OF GAMMA RAY EXPOSURE BUILDUP FACTORS IN STRATIFIED SHIELDS FOR POINT ISOTROPIC SOURCES, INCLUDING THE EFFECTS OF INCOHERENT AND COHERENT SCATTERING

The effects of including incoherent (bound-electron) and coherent (Rayleigh) scattering in exposure buildup factor calculations for point isotropic gamma ray sources, penetrating a two-layer water-lead shield have been investigated in the gamma ray energy (E?) range of 40 keV to 3 MeV. Incoherent scattering decreases the values of these factors in both layers up to E? ~ 200 keV and the effect i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016